",$n;
 
Home
Sobre o LGE
Projetos
Ferramentas
Time do LGE
Imprensa
Publicações
Links
Como chegar
Contato
Intranet
Webmail
Bioinformática
 





 
The golden bridge for nature: the new biology applied to bioplastics.   Rincone, J.; Zeidler, A. F.; Grassi, M. C. B.; Carazzolle, M. F.; Pereira, G. A. G.  Journal of Macromolecular Science, Part C: Polymer Reviews, 49(2):85-106, 2009. doi:10.1080/15583720902834817  2009


There is a common concept in life: large and complex molecules result from the synthesis of units that are later joined together. Mankind learned this principle and employed it to develop language, culture, and technology. This same principle is applied in the petrochemical industry by fractionating the fossilized carbon chains into small molecules and then polymerizing them in order to develop synthetic polymers, which are much more flexible, resistant, and durable than natural polymers. Recent developments in molecular biology have opened the possibility of modifying organisms in order to create new biosynthetic routes for the production of monomers that would fit the biggest challenge in modern society: the production of high quality polymers from renewable feedstocks. This review focuses on the latest advances in molecular biology and the new knowledge and technologies that enable the possibility of converting cells into efficient and sustainable chemical reactors. The first examples of this technological advancement are already in the market.
 
<< Voltar