",$n;
 
Home
Sobre o LGE
Projetos
Ferramentas
Time do LGE
Imprensa
Publicações
Links
Como chegar
Contato
Intranet
Webmail
Bioinformática
 





 
he Hansenula polymorpha MOX gene presents two alternative transcription start points differentially utilised and sensitive to respiratory activity.   Genu, V. F.; Gödecke, S.; Hollenberg, C.; Pereira, G. A. G.  European Journal of Biochemistry 270: 2467-2475  2003


The peroxisomal methanol metabolism of Hansenula polymorpha depends on a group of genes that are coordinately regulated. Methanol oxidase (Mox) plays a key role in this pathway and its synthesis has been shown to be regulated at the transcriptional level. MOX expression is strongly repressed on glucose and activated on glycerol or methanol. In this study we have identified two MOX transcripts that are differentially expressed along MOX derepression. The first one, named l-MOX (for longer MOX), starts at position -425, is only weakly and transiently transcribed and is not translated into the Mox protein. The other is the true MOX mRNA, which initiates around position -25. Using a strain bearing multiple copies of MOX(Q1N) and a reporter gene fused to the MOX promoter, regulation of the two transcripts was investigated. Initiation of the true MOX correlates with repression of l-MOX and conditions that are repressive for MOX transcription, such as the inhibition of mitochondrial activity, lead to higher levels of l-MOX expression. This effect was first observed in a mox mutant (Q1N-M8) unable to grow on nonfermentable carbon sources. No function was detected for l-MOX, but its regulation follows a pattern similar to that of catalase, which is essential for methanol metabolism. This suggests that, l-MOX, although precisely regulated, seems to be a remnant of the evolution of the methanol metabolism network.


Apoio financeiro: FAPESP
 
<< Voltar